Heading

This is some text inside of a div block.
This is some text inside of a div block.
This is some text inside of a div block.
Tarifa en México
This is some text inside of a div block.
Tarifa internacional
This is some text inside of a div block.

Objetivos

01

What’s a Rich Text element?

The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create content.

Static and dynamic content editing

A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!

How to customize formatting for each rich text

Headings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.

02

What’s a Rich Text element?

The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create content.

Static and dynamic content editing

A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!

How to customize formatting for each rich text

Headings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.

03

Introducir al estudiante al estudio de las ondículas desde un punto de vista formal en el sentido de Meyer-Mallat.

04

Conocer algunas aplicaciones de las ondículas a problemas inversos, compresión o a denoising.

Perfil de Estudiante

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Clase abierta

Temario

What’s a Rich Text element?

The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create content.

Static and dynamic content editing

A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!

How to customize formatting for each rich text

Headings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.

Evaluación y proyectos

SUSCRÍBETE AL CURSO

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Bourbaki Finanzas Logo

Bourbaki Finanzas

Análisis de Fourier y Wavelets

Solicitar informes

Objetivos

Un repaso de álgebra lineal con miras al análisis de Fourier y al estudio de las Ondículas.

Estudiar las aplicaciones de la transformada de Fourier y las bases de Haar, las cuales representan los primeros pasos para la teoría de Ondículas.

Introducir al estudiante al estudio de las ondículas desde un punto de vista formal en el sentido de Meyer-Mallat.

Conocer algunas aplicaciones de las ondículas a problemas inversos, compresión o a denoising.

Temario​

Curso uno

Análisis de Fourier

  • Conceptos básicosLa transformada de Fourier discreta
  • La transformada de Fourier continua
  • Estudio de la transformada de Fourier en L1
  • Teoremas fundamentalesLa transformada rápida de Fourier
  • Aplicaciones a la compresión
  • Principio de Heisenberg
  • Efecto Gibbs
  • Relación con la teoría de la información
  • Transformadas de Gabor​
  • Haar: las primeras ondículas
  • Bases de Haar
  • Producto de Kronecke
  • rAplicaciones a la compresión
  • Transformada de Haar

Curso dos

  • Ondículas discretas
  • Ondículas continuas
  • Transformada de ondículas
  • Frames
  • Regularidad de Lipschitz
  • Aplicaciones a la compresión

Profesores del curso

No items found.

Próxima fecha

Foto decorativa del formulario
Solicita información
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Tarifas hasta Diciembre de 2023, pregunte por opciones para congelar la Tarifa